A Data-Driven Model Parameter Compensation Method for Noise-Robust Speech Recognition
نویسنده
چکیده
A data-driven approach that compensates the HMM parameters for the noisy speech recognition is proposed. Instead of assuming some statistical approximations as in the conventional methods such as the PMC, the various statistical information necessary for the HMM parameter adaptation is directly estimated by using the Baum-Welch algorithm. The proposed method has shown improved results compared with the PMC for the noisy speech recognition. key words: noisy speech recognition, HMM
منابع مشابه
روشی جدید در بازشناسی مقاوم گفتار مبتنی بر دادگان مفقود با استفاده از شبکه عصبی دوسویه
Performance of speech recognition systems is greatly reduced when speech corrupted by noise. One common method for robust speech recognition systems is missing feature methods. In this way, the components in time - frequency representation of signal (Spectrogram) that present low signal to noise ratio (SNR), are tagged as missing and deleted then replaced by remained components and statistical ...
متن کاملImproving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملNonlinear Compensation Using the Gauss-Newton Method for Noise-Robust Speech Recognition
In this paper, we present the Gauss-Newton method as a unified approach to estimating noise parameters of the prevalent non-linear compensation models, such as vector Taylor series (VTS), data-driven parallel model combination (DPMC), and unscented transform (UT), for noise-robust speech recognition. While iterative estimation of noise means in a generalized EM framework has been widely known, ...
متن کاملSequential Noise Compensation by Sequential Monte Carlo Method
We present a sequential Monte Carlo method applied to additive noise compensation for robust speech recognition in time-varying noise. The method generates a set of samples according to the prior distribution given by clean speech models and noise prior evolved from previous estimation. An explicit model representing noise effects on speech features is used, so that an extended Kalman filter is...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEICE Transactions
دوره 88-D شماره
صفحات -
تاریخ انتشار 2005